The Dietz Lab at Technische Universität München

Designing the sequences of biomolecules to construct molecular devices and machines.

Inspired by the rich functionalities of natural macromolecular assemblies such as enzymes, molecular motors, and viruses, we investigate how to build increasingly complex molecular structures. Our goal is to build molecular devices and machines that can execute user-defined tasks. Molecular self-assembly with DNA is an attractive route toward achieving this goal. DNA origami in particular enables building nanodevices that can already be employed for making new discoveries in biomolecular physics and protein science.


Recent publications from this laboratory:


K. Wagenbauer, C. Sigl, and H. Dietz: "Gigadalton-scale shape-programmable DNA assemblies", NATURE 2017

F. Praetorius, B. Kick, K. Behler, M. Honemann, D. Weuster-Botz, and H. Dietz: "Biotechnological mass production of DNA origami", NATURE 2017

F. Praetorius and H. Dietz: "Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes", SCIENCE 2017

F. Kilchherr, C. Wachauf, B. Pelz, M. Rief, M. Zacharias, H. Dietz: "Single-molecule dissection of stacking forces in DNA", SCIENCE 2016

T. Gerling, K. Wagenbauer, A. Neuner, H. Dietz: "Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components", SCIENCE 2015

We are thankful for financial support from the Deutsche Forschungsgemeinschaft via the Excellence Clusters CIPSM and NIM, through the SFB863, and via the Gottfried-Wilhelm-Leibniz Prize program. Further support comes from the European Research Council.